skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jalihal, Amanda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820−, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820− absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications. 
    more » « less
  2. Combination nanodrugs are promising therapeutic agents for cancer treatment. However, they often require the use of complex nanovehicles for transportation into the tumor site. Herein, a new class of carrier-free ionic nanomaterials (INMs) is presented, which are self-assembled by the drug molecules themselves. In this regard, a photothermal therapy (PTT) mechanism is combined with a chemotherapy (chemo) mechanism using ionic liquid chemistry to develop a combination drug to deliver multiple cytotoxic mechanisms simultaneously. Nanodrugs were developed from an ionic material-based chemo-PTT combination drug by using a simple reprecipitation method. Detailed examination of the photophysical properties (absorption, fluorescence emission, quantum yield, radiative and non-radiative rate) of the INMs revealed significant spectral changes which are directly related to their therapeutic effect. The reactive oxygen species quantum yield and the light to heat conversion efficiency of the photothermal agents were shown to be enhanced in combination nanomedicines as compared to their respective parent compounds. The ionic nanodrugs exhibited an improved dark and light cytotoxicity in vitro as compared to either the chemotherapeutic or photothermal parent compounds individually, due to a synergistic effect of the combined therapies, improved photophysical properties and their nanoparticles’ morphology that enhanced the cellular uptake of the drugs. This study presents a general framework for the development of carrier-free dual-mechanism nanotherapeutics. 
    more » « less
  3. Sulfur dioxide (SO2) pollution has become an increasing issue world-wide as it is produced both naturally and as industrial waste. Thus, it is critical to develop a sensor and detection methods to analyze SO2 in the atmosphere. In order to design and generate an effective sensor that detects low levels of SO2, fuchsine dyes have been used as a potential sensor material. New hydrophobic derivatives of Pararosaniline hydrochloride (pR-HCl) is developed to further improve the sensitivity of fuchsine dyes towards SO2 gas. It has been shown that these dyes can provide an economic and efficient colorimetric detection of SO2. In this work, (pR-HCl) is converted into an ionic material (IM) via a facile ion exchange reaction with bis (trifluoromethane) sulfonamide (NTF2) counterion. The new, hydrophobic derivative, pararosaniline bis (trifluoromethane) sulfonamide (pR-NTF2) IM was converted into stable aqueous ionic nanomaterials (INMs) by a reprecipitation method. Examination of absorption spectra results revealed that pR-NTF2 IM exhibits enhanced molar absorptivity in comparison to the parent dye (pR-HCl). The improved photophysical properties allowed a framework for a highly sensitive nanosensor for detection of SO2. A paper based portable SO2 sensor was also developed and tested for its ability to colorimetric detection of SO2. The cost effective and stable paper-based sensor exhibited the rapid response to decolorize the fuchsine dyes in few seconds as compared to their parent compound.Keywords: SO2 Detection, Portable and Low-cost Sensor, Nanosensor. 
    more » « less